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Talk overviewTalk overview

  Introduction

– Galaxy clusters
  The XMM Cluster Survey

– Cluster detection

– Optical follow-up

– First data release
  Future science

– Cosmological constraints

– Scaling relations



  

Galaxy clustersGalaxy clusters
  Largest gravitationally bound 

objects in the universe

  Cosmological probes

  Independent and 
complementary constraints

  Laboratories galaxy evolution

  M ~ 1014-15 Msolar

  Galaxies 5%; hot intracluster 
medium 15%; Dark matter 80%

  Detected in optical; weak or 
strong lensing; SZ effect; X-rays
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Galaxy clusters in X-raysGalaxy clusters in X-rays

  ICM at T~107k.

  Bremsstrahlung emission 
~ne

2

   High contrast against sky 
-less prone to projection 
effects.

  X-ray properties correlated 
to mass

 Tx~M2/3 ,Lx~M4/3 
;Lx~Tx2 



  

X-ray cluster surveysX-ray cluster surveys
  XMM Newton

 Sensitive, large FOV, Spectral 
imaging capabilities.

 XMM-LSS (Pierre et al. 2006; Pacaud 
et al. 2007; XDCP (Fassbender et al. 
2010); XMM-COSMOS (Finoguenov et 
al. 2007); SXDS (Finoguenov et al. 
2010) 

 … and XCS (Lloyd-Davies et al. 
2010; Romer et al. 2001)

  Chandra

 High spatial resolution, not as 
sensitive.

 CHAMP (Barkhouse et al. 2006).

  Follow in similar vain as cluster surveys 
derived from the ROSAT All Sky Survey and 
the ROSAT pointed observations archive.
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X-ray cluster surveysX-ray cluster surveys

Next X-ray mission >2020.

  Emphasis on upcoming optical 
surveys (pan-STARRS, DES). 

  But optical surveys need mass 
proxies. 

  Provided via X-ray to optical 
scaling relations.



  

 Serendipitous X-ray cluster survey 

 XMM-Newton Public Archives.

 Final area ~500 deg2 (serendipitous)

– Flux limit 5x1014 erg s-1 cm-2

– Typical exposure times 10ks.

– Enables detection of z>1 systems (e.g. XMMXCS J2215 
z=1.46; Stanford et al., 2006; Hilton et al., 2009;2010)

 Science Goals:

– Cosmological parameters σ8, ΩM, ΩΛ to 5, 10 and 15 
percent accuracy respectively.

– Cluster scaling relations and their evolution  (e.g. Lx-Tx, 
Lopt-Tx, Ngal-Tx).

– Use high redshift clusters to study theories on galaxy 
evolution and formation.



  

 5776 Observations processed (21st July 2010).

 Targetted pointings,  Galactic plane, Megallanic clouds excluded.

 410 deg² statistical area available for cluster finding.



  

Automated Automated 
pipelinespipelines

 XCS image creation.

– 5642 obsIDs

 Source detection and classification.

– Wavelet algorithm

– 3669 cluster candidates

– 1022 able to measure Tx

 Source properties:

− NED z search (154 known)

− Spatial fitting Lx (ongoing)

− Spectral fitting Tx (517)

− X-ray redshifts zx (Δz=0.15)



  

Selection FunctionSelection Function

 Underlying distribution of clusters before and after folding in 
selection function

 Expected for clusters in 500 deg2 with >500 counts (Sahlen et al. 
2009)



  

XCS NEEDS REDSHIFTS!XCS NEEDS REDSHIFTS!

 Need to confirm clusters and assign redshifts.

 Spectra too time consuming; imaging cheaper and more 
efficient.

 Main method: use 2 band wide field imaging and exploit 
universal red-sequence relation within clusters (i.e red-
sequence technique). 

 Redshift sources:  

 Dedicated follow up survey NXS (2 band imaging). 

 ~ half area covered by SDSS DR7.

 SDSS Stripe 82 co-add. 

 Targeted spectroscopic follow up (Keck, WHT, NTT, Gemini, 
Suburu). 



  

What is a red-sequence?What is a red-sequence?
 Galaxy clusters exhibit a 

morphology-density 
relation.

 The core of clusters consist 
of old passively evolving 
elliptical galaxies

 Coeval, formed from the 
same stellar population 

 Exhibit tight relation in 
colour-magnitude space; 
the red-sequence.

 Red-sequences are very 
homogeneous within a 
cluster and between 
clusters.



  

 Evolves passively up to z=1.3. Implies old passively evolving ellipticals, zf~>2

 Slope = mass-metallicity relation (Kodama & Arimoto 1997)

 scatter=age effects (Kodama et al. 1999)

 zero-point= bulk properties of the stars -> redshift estimator.     Fig. Gladders 
et al. 1998



  

FIG. 2. Simulated (V-IC)AB vs. (IC)AB color-magnitude diagram. Model 
apparent magnitudes and colors at various redshifts for several types of 
galaxies at a fixed MI of -22. The dotted lines connect galaxies at the same 
redshift. Solid near-horizontal lines show the expected slope of the red 
sequence at each redshift. (Gladders and Yee 2000)

− Elliptical galaxies are the 
reddest galaxies at a given 
redshift, and all lower 
redshifts.

− Using 2 filters straddling the 
4000A break provides a 
powerful tool for detecting 
clusters in optical surveys 
(Gladders and Yee 2000).

Fig. 3. SDSS spectral template of an “early-
type” galaxy. 



  

 Dedicated optical follow-up survey to 
XCS.

 Goal: Identify clusters and measure 
cluster photometric redshifts via their 
red sequencered sequence.

 NOAO 4m Mayall telescopes at KPNO, 
Arizona; and CTIO, Chile.

 46 nights; 7 observing runs. (4 northern 
winter, 3 southern winter)

 Aim: image ~330 XCS fields; ~500 
clusters.

 Wide field Mosaic CCD imaging. 36' x 
36' f.o.v. encompassing 1 XMM-Newton 
field) generally containing multiple 
candidates. 

 Image clusters to z=1

 Acts as screen for high redshift clusters 
followed up at Keck.

NOAO XMM Cluster Survey (NXS)

Image credit: NOAO/AURA/NSF



  

NXS Observing StrategyNXS Observing Strategy
 CCD mosaic imaging in the r-band 

and z-band filters chosen to 
provide maximum separation at 
z~0.5.

 Two 600s exposures in r', three 
500s exposures in z' (three 
exposures to reduce high 
background levels).

 Dithering to eliminate chip gaps in 
final stacked image.

 Depth: r ~24.7, z~22.2 at 10σ.

 Priority to XCS500 clusters. Lower 
priority assigned to fields with 
SDSS, INT coverage.

 XCS pipeline written for 
completeness; use existing optical 
data as a preliminary screen for 
follow up targets.

Image credit: NOAO/AURA/NSF



  

NXS observedNXS observed

  154 XCS fields observed
 609 cluster candidates

  111 photometrically calibrated
 473 cluster candidates

  Typical seeing: r=1.39''; z=1.23''
  Typical depth: r=25.00; z=23.79



  

NXS observedNXS observed



  

Data reduction and object catalogsData reduction and object catalogs
 Following the NOAO Deep Wide-Field 

Survey MOSAIC Reduction procedures.

 Reduction using IRAF's MSCRED package 
-attempts to treat handling of mosaic field 
as a single CCD image.

 Difficulties: pupil ghost (KPNO only), z-band 
fringing, WCS position offsets between r 
and z-band.

 Catalogs created with SExtractor.

 Star-galaxy separation using the 
concentration parameter C (Metcalfe et 
al.,1991)

 Apply atmospheric extinction and Schlegal 
dust map corrections.

 zeropoints determined using a combination 
of standard stars, sdss coverage, NXS 
standard star fields.



  

NXS Redshift Algorithm NXS Redshift Algorithm 

 The model:

− Model evolved with 
redshift using Bruzual and 
Charlot 2003 population 
synthesis code with a 
0.1Gyr burst and Salpeter 
IMF at zf=2.5

− Empirical red sequence 
model calibrated to 
reproduce the red 
sequence of an average 
low redshift cluster z=0.1-
0.11 from the SDSS C4 
catalog (Miller et al. 2005).



  

FIG. 3. Portion of the observed V-IC vs. IC CMD for the CNOC2 
Redshift Survey patch CNOC0223+00. Bounding red sequences, 
constructed as detailed in the text, are shown as solid lines, from M*-
1 to the survey limits. Two overlapping color slices (shaded regions) 
are highlighted, with the overlap region a darker shade. For clarity, 
the shading in the second slice has been set 0.5 mag fainter than 
that in the first slice.

Gladders and Yee 2000.

− Redshift estimation:

 Select galaxies from within 
twice the X-ray extent of the 
cluster detected by XCS.

 Assign each galaxy a 
redshift using the model.

NXS Redshift Algorithm NXS Redshift Algorithm 



  

NXS Redshift AlgorithmNXS Redshift Algorithm
 Compare 'red sequence' colours of 

candidate galaxies to field sample 
(scaled to area of cluster candidate).

 Fit overdensity peak in colour=> red 
sequence redshift.

 Use an unbinned likelihood function 
(Cash 1979)

 Optimise on redshift: 0.1<z<1.0, 
Δz=0.01; cluster richness: 0<N<50, 
ΔN=1.  

 Cluster model: Gaussian probability 
density function (e.g. Postman et al., 
1996; Koester et al., 2007) 

 Background model: histogram 
derived from NXS Field data



  



  



  



  



  

Photo-z's from SDSSPhoto-z's from SDSS

 1,149 cluster candidates in SDSS (z<0.5), 66 in stripe 82 (z<1.0)

 Universal field sample, candidates+known clusters/groups masked.

 r, z band imaging → red-sequence redshifts.



  

Cluster ZooCluster Zoo



  

Cluster ZooCluster Zoo

418 confirmed 
clusters

NXS: 147 

SDSS: 274 

Stripe 82: 32 



  

Photo-z vs spec-zPhoto-z vs spec-z



  

First data releaseFirst data release

>500 X-ray selected optically confirmed 
clusters

30 spec-z's obtained by XCS

120 from LRG spec-z's

220 photo'z from NXS/ SDSS/ Stripe 82. 

150 previously known



  



  

Expected constraintsExpected constraints

  Parameter constraints from n(M,z) (Sahlen et al. 2009)

  Based on mock LCDM cosmology, selection function and M-T 
relation.
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Preliminary Lx-Tx relationPreliminary Lx-Tx relation

  L-T based on 118 clusters

  Selection function not included

  Lloyd-Davies et al. in prep.



  

Preliminary Lx-Tx relationPreliminary Lx-Tx relation

  Can probe evolution of L-T relation 

  Lloyd-Davies et al. in prep



  



  

XCS Optical-X-ray Scaling XCS Optical-X-ray Scaling 
RelationsRelations

 Ngals and Lopt vs X-ray Temperature and X-ray Luminosity.

− Important for optical cosmology surveys (i.e. DES) using 
optical data alone to infer cluster masses.

 HOD

− Important for DM simulations.
 No uniform measure of richness; using MAXBCG method 

(Koester et al 2007).

− Galaxies within 2sigma of red sequence colour.

− Rvir (from measured temperature). 

− 0.4L* => z=0.3 for SDSS clusters; z=0.8 for NXS and 
Stripe 82.



  

Preliminary N200-Tx relationPreliminary N200-Tx relation



  

SummarySummary

First XCS data release of >500 X-ray selected, optically 
confirmed clusters 

Largest homogeneous sample of X-ray selected clusters with 
temperature measurements

Beginning science exploitation phase

Constrain cosmological parameters

Evolution in L-T relation

Optical to X-ray scaling relations with view to DES
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